SELECTION OF ARX MODELS ESTIMATED BY THE PENALIZED WEIGHTED LEAST SQUARES METHOD
نویسندگان
چکیده
منابع مشابه
Hermite Scattered Data Fitting by the Penalized Least Squares Method
Given a set of scattered data with derivative values. If the data is noisy or there is an extremely large number of data, we use an extension of the penalized least squares method of von Golitschek and Schumaker [Serdica, 18 (2002), pp.1001-1020] to fit the data. We show that the extension of the penalized least squares method produces a unique spline to fit the data. Also we give the error bou...
متن کاملPenalized least squares for single index models
The single index model is a useful regression model. In this paper, we propose a nonconcave penalized least squaresmethod to estimate both the parameters and the link function of the single index model. Compared to other variable selection and estimation methods, the proposed method can estimate parameters and select variables simultaneously.When the dimension of parameters in the single indexm...
متن کاملLinear mixed models and penalized least squares
Linear mixed-effects models are an important class of statistical models that are not only used directly in many fields of applications but also used as iterative steps in fitting other types of mixed-effects models, such as generalized linear mixed models. The parameters in these models are typically estimated by maximum likelihood (ML) or restricted maximum likelihood (REML). In general there...
متن کاملComparing implementations of penalized weighted least-squares sinogram restoration.
PURPOSE A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinog...
متن کاملPenalized weighted least-squares image reconstruction for positron emission tomography
Presents an image reconstruction method for positron-emission tomography (PET) based on a penalized, weighted least-squares (PWLS) objective. For PET measurements that are precorrected for accidental coincidences, the author argues statistically that a least-squares objective function is as appropriate, if not more so, than the popular Poisson likelihood objective. The author proposes a simple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of informatics and cybernetics
سال: 2010
ISSN: 0286-522X
DOI: 10.5109/25904